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Abstract 

The concentration and temperature dependencies of magnetic anisotropy in the quasitemary (Yt °,Th,.): Fet~ B system have 
been studied on aligned powders. With increasing Th content, the enhancement of the uniaxial anisotropy at low temperatures 
(gl  at 4.2 K increases from 0.8 MJ m -~ for x = 0  to 1.5 MJ m ~ for x= 1) and the change in Kt(T)bchaviour from 
anomalous characteristic for Y:Fet4B to the monotonous decrease with increasing temperature have been found. © 1997 
Elsevier Science S.A. 
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I. Introduction 

Th~Fet4B is the only actinide analogue of rare° 
earth (R) compounds with the tetragonal crystal 
structure of the Nd~Fet4B type. The structure has 
two nonoequivalent positions for R atoms, six for Fe 
and one for B. In R:Fet4B, the Fe sublattice has 
strong uniaxial magnetic anisotropy, which is one of 
the main physical reasons for the perfect permanent- 
magnet properties of this group of magnetic materials 
(see for review [ I ]). Concentration dependence of the 
average Fe magnetic moment V.ve and the Curie 
temperature Tc have been studied in solid solutions 
(Ylo~Th,)~Fet4B [2]. Both the Y and Th atoms do 
not carry a magnetic moment, bu{ Y is trivalent and 
Th is tetravalent. Both, the considerable reduction of 
7~ and the small reduction of V.v,~ in observed 
Th ~ Fe t4 B in comparison to Y, Fe t4 B are attributed to 
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additional filling of the Fe 3d band in the Th COmo 
pound. The magnetic anisotropy encr~ of Y~Fes,B 
(described completely by the first anisotropy constant 
K t) has anomalous non°monotonous temperature de° 
pendence. In contrast to that, the K t(T) dep¢ndence 
is monotonous in Th~Fe~,tB. In the present work, the 
concentration and temperature dependenci¢s 
of the magnetic anisotropy in the quasiternary 
(Yt -,Th~ )2 Fe ~4 B system have been studied systematio 
cally. 

2. Experimental 

The alloys were prepared by arc melting the ap° 
propriatc amounts of the components under helium 
protective atmosphere with further annealing for a 
week at 1100°C. The magnetization curves were meao 
sured on aligned powders parallel and perpendicuhr 
to the axis of alignment in pulsed magnetic fields up 
to 10 T in the temperature r~nge 4.2=320 K. The 
anisotropy field was determined by the singleopoint- 
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de~ection method from hard-direction magnetization 
cu~¢s. Thermal expansion was studied by X-ray dila- 
tOntel~. 

3. R~.lts and discussion 

Figure I shows magnetization curves measured par- 
alle| and per~ndicular to the axis of alignment for 
~ Fe ~ B. An intperfect alignment, which is indicated 

a non-lineari~ of the hard-direction curve and by a 
relatively high (~ 3 T) saturation field in the easy- 
magnetization direction, is due to the relatively low 
aniumo~ of the cont~unds and a small amount 
(2~3%) of an i~tropic impurity phase ba~d on a-Fe. 
Nevertheless. the alignntent is strong enough to de- 
tern|the the spontaneous magnetization M, properly 
(from the easy-ntagnetization direction cu~e)and the 
anig)tropy field B~ (from the hard-ntagnetization di- 
rection cup,,e). B, determined as a point of minimum 
of d:M/dB ~ is shown in Fig. I by the arrow. For 
olher com~unds studied, the magnetization curves 
are qualitatiwly similar. 

Figure 2 shows the tentperature dependence of the 
first ani~tropy constant g~ ~ (M~B~,)/2. A gradual 
development from anomalous to normal K~tT) ~ -  
hay|our with increasing Th content is ~en in Fig. 2. 
For the compounds with x _~ 0,4, an anomalous growth 
characteristic for Y~ Fe =~ B is oh~rved. 

~ e  anomalous temperature de~ndence of K~ of 
th~ |:e ~uhlatlice in R~Fct~B (with a. triva!e|!t R ion) 
i~ tonal@red to originat~ from th~ different tempera° 
lure d~p~nde|lc~ of the nlagn~tic ntontcnt~ of the Fc 
a++oms h~at~d o|! ++++ lallogtaphically |lonoequival¢|lt 
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Fig. 2. Temperature dependence cff the first anisotropy constant 
k'~ of (Y~ ,Th, ) ,Fe~B. 'The dashed line represents third power of 
magnetitation for x ~ 1.0 raat¢hed at 4.2 K. The data for x ~ 0 are 
taken from the singl¢-¢~stal measurements [31, 

positions. They have different signs of the local 
anisotropy constant. According to the M6ssbauer- 
effect investigations of the hyperfine magnetic fields 
Hm on ~TFe nuclei in different non-equivalent posio 
lions in Ro, Fe+~B [4], the most gently sloping Hh|(T) 
de~ndence is oh~rved for the ires|lions 8j~, 8j~ and 
10k~. while ia the other ~)sitions. 4e, 4c and IOk~, the 
v~flue~ of Hm(T)(and. consequently, of the Fe ntago 
nctic moment M|~.) decrease more sleeply wilh lad 
creasin~ temperature° 

According to the singleoion ntod~l, the local s~¢° 
ondoordcr ani~tropy constant K{ (ibr ith position) is 
pro~ttional at low temperatures to MI:~. Therefore. 
the oh~rved non-ntonotonous temperature depen° 
dence of the total c(mstant 

can I~ explained assuming negative K~ for Fe atonts 
Ideated on positions with steep tentperature decrease 
of M~:~. it should I~ noted, that using the K+(7")0{ 
M,{7 ) rcla|ion for ntactoscopi¢ values of &'~ aim M, 
le~ds to ~m~usion, For Th,Fe~aB, lhe fit K~(T!ct 
M~(T) is shown in Fig. 2 {"latched at 4.2 K), Ka{l') 
~ales rather poorly with the third power of ~:~(T). 
In the remaining cont~unds, it does not scale at all, 
since the temperature decadence of spontaneous 
ntagnetization is monotonous for all compounds. 
Therefore K~T)cannot ~ described using the tent- 
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perature dependence of the average Fe magnetic 
moment. The consideration of several Fe sublattices 
is a principal point in the explanation of the observed 
anomaly. 

The enhancement of the uniaxial anisotropy at low 
temperatures as well as the change of the tempera- 
ture dependence in the (Yt _ =The), Fe ~.~ B system with 
increasing Th content can be explained by the influ- 
ence of the effective valence of the R ion on the 
magnetocrystalline anisotropy of the Fe sublattice. 
Agsuming the point charge model, K I depends on the 
effective charge of R ligands around ith Fe atom [5]: 

K[ orAl. = ZRA k + ZFe A~: ¢ (2) 

where A~, is the second-order crystal field parameter, 
Za and Z~:,~ are the effective charges of the R and Fe 
ions, Ah and A~: c are the lattice sums. The effective 
charges of the ions are usually assumed to be ZR = 31el 
for the trivalent R, ZR --- 41el for the tetravalent R and 
ZF~ = 0.51e[ [5]. Since the lattice sums A'R and A~ are 
comparable [6], the change of the valence from 3 + (Y) 
to 4 + (Th) should result in a large change in K I. 

Concentration dependencies of magnetization and 
magnetic anisotropy are presented in Fig. 3. Although 
the spontaneous specific magnetization Ms at 4.2 K 
exhibits a strong decrease with increasing Tit content, 
the corresponding increase in ~t:¢ is very small. Kt at 
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Fig. 3. Concentration dependences of spontaneous specific magne° 
tization M,. average spontaneous nulgnetic moment pet' Fe atom 
#re (top) and first anisotropy constant Kn at 4.2 and 3IX) K 
(bottom). 

4.2 K increases practically linearly with increasing Th 
content. Different temperature dependence lea~ to 
almost the same K~ values (1 MJ m -3) for all the 
compounds at room temperature. The Curie tempera- 
ture decreases with x somewhat non-linearly from 
572 to 487 K. 

Besides the anomaly" in magnetic anisotropy dis- 
cussed above, there is another specific feature of the 
R2Fet4B compounds. They have l n v a r - ~  thermal 
expansion behaviour below T c due to very large spon- 
taneous magnetostriction, and the volume effects ~s 
reaches 2% at low temperatures [7]. This lnvar effect 
was considered as the origin of the non-monotonous 
Kt(T) behaviour [8]. We have found, however, that 
there is no principal difference in thermal expansion 
between compounds with 'normal' and 'anomalous' 
KI(T) dependence in the Y2(Fet_xCo=)t4B system [9]. 
Thermal expansion of Y2Fet4B and Th2Fet~B mea- 
sured on small single crystals is shown in Fig. 4. The 
lines represent the extrapolation of paramagnetic be- 
haviour onto the ordered range (the Debye tempera- 
ture value TD = 450 K was used for the extrapolation). 
The related differences between measured and ex- 
trapolated values of lattice parameters corres~nd to 
the linear A, (in the basal plane) and At (along the c 
axis) spontaneous magnetostrictions. Both terminal 
compounds have rather similar thermal expansion, At 
5 K, they have nearly the same A~ ~ 9 × 10 ='1. The 
difference is in the A,, values (2.5 x 10-3 and 5 × 10- ~ 
in Y:Fet4B and Th:Fe~4B, respectively). However, 
this difference could not influence magnetic 
anisotropy, as follows from data on (Y,~Th,:):Fe~4B 
(Fig. 4). This compound has already A,, as in Th: Fet4B, 
but still has non°monotonous gt(T) (Fig. 2). The 

tncrc,tses slightly from volume effect to~ ~ 2 A, + A, ' ~ ' 
20 × 10 ~ to 23.5 × 10 =~ with increasing Th content. 
This shows no correlation b, tween the huge lnvar 
effect in R:Fet,tB and the anomalous behaviour of 
magnetic anisotropy of the Fe sublattice, 

We can also mention in this respect that the dif° 
ference in lattice parameters between La: Fe t.t B and 
Lu2Fet4B is 1.4% (a) and 4.1% (c) [10]. The c/a 
ratio differs by 2.7%. However, these large variations 
do not affect the character of the gt(T) curve. For 
both compounds, Kt(T)is non-monotonous and very 
similar in both cases. The influence of the thermal 
expansion on the interatomic distances is much 
weaker, all changes in a, c and c/a do not exceed 
0.5e/t, bc!ow T c. The point-charge-model calculation 
shows that the change in K t in Y~Fet,B owing to the 
thermal expansion would be less than !% in the 
temperature interval 0=0.5 Tc where not~omtmoto° 

Extrapol~|t on nous behaviour of K~ is observed [5]. - . . . .  i ~ 
of the high°temperature Kt(T) curve to 0 K gives a 
much larger difference (approx. 40%) with respect to 
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884 
(Yt.ffhx)=Fe14 B the actual K~(4.2 K) value, which cannot be explained 

by a possible influence of the thermal expansion. 
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Fig~ 4. Tcm~ra,~re Jcpcad¢~cc,~ of the lattice parameters a and ¢ 
for some of the (Y,~..,Th,):Fct~B compounds. The l i n~  are the 
¢s!rapo!a|iong from the paramagneli¢ to the ordered ~ag~. 
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