

Journal of Alloys and Compounds 262-263 (1997) 467-470

Magnetic properties of $(Y_{1-x}Th_x)_2Fe_{14}B$

A.V. Andreev^{a,*}, M.I. Bartashevich^b, T. Goto^c, S.M. Zadvorkin^d

^aInstitute of Physics, Academy of Sciences, Na Slovance 2, 18040 Prague 8, Czech Republic ^bUral State University, 620083 Ekaterinburg, Russia ^cISSP University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan ^dInstitute for Engincering Sciences, 620219 Ekaterinburg, Russia

Abstract

The concentration and temperature dependencies of magnetic anisotropy in the quasiternary $(Y_{1-x}Th_x)_2Fe_{14}B$ system have been studied on aligned powders. With increasing Th content, the enhancement of the uniaxial anisotropy at low temperatures $(K_1 \text{ at } 4.2 \text{ K} \text{ increases from } 0.8 \text{ MJ m}^{-3} \text{ for } x = 0 \text{ to } 1.5 \text{ MJ m}^{-3} \text{ for } x = 1)$ and the change in $K_1(T)$ behaviour from anomalous characteristic for $Y_2Fe_{14}B$ to the monotonous decrease with increasing temperature have been found. © 1997 Elsevier Science S.A.

Keywords: Hard magnetic materials; Rare-earth intermetallics; Magnetic anisotropy; Thermal expansion

1. Introduction

 $Th_2Fe_{14}B$ is the only actinide analogue of rareearth (R) compounds with the tetragonal crystal structure of the Nd₂Fe₁₄B type. The structure has two non-equivalent positions for R atoms, six for Fe and one for B. In $R_2Fe_{14}B$, the Fe sublattice has strong uniaxial magnetic anisotropy, which is one of the main physical reasons for the perfect permanentmagnet properties of this group of magnetic materials (see for review [1]). Concentration dependence of the average Fe magnetic moment $\mu_{\rm Fe}$ and the Curie temperature $T_{\rm C}$ have been studied in solid solutions $(Y_{1-},Th_{1})_{2}Fe_{14}B$ [2]. Both the Y and Th atoms do not carry a magnetic moment, but Y is trivalent and Th is tetravalent. Both, the considerable reduction of $T_{\rm C}$ and the small reduction of $\mu_{\rm Fe}$ in observed Th₂Fe₁₄B in comparison to Y_2 Fe₁₄B are attributed to additional filling of the Fe 3d band in the Th compound. The magnetic anisotropy energy of $Y_2 Fe_{14}B$ (described completely by the first anisotropy constant K_1) has anomalous non-monotonous temperature dependence. In contrast to that, the $K_1(T)$ dependence is monotonous in Th₂Fe₁₄B. In the present work, the concentration and temperature dependencies of the magnetic anisotropy in the quasiternary $(Y_{1-x}Th_x)_2Fe_{14}B$ system have been studied systematically.

2. Experimental

The alloys were prepared by arc melting the appropriate amounts of the components under helium protective atmosphere with further annealing for a week at 1100°C. The magnetization curves were measured on aligned powders parallel and perpendicular to the axis of alignment in pulsed magnetic fields up to 10 T in the temperature range 4.2-320 K. The anisotropy field was determined by the single-point-

^{*}Corresponding author, KFK MFF UK, Ke Karlovu 5, 12116 Prague 2, The Czech Republic. e-mail: andreev@met.mff.cuni.cz

detection method from hard-direction magnetization curves. Thermal expansion was studied by X-ray dilatometry.

3. Results and discussion

Figure 1 shows magnetization curves measured parallel and perpendicular to the axis of alignment for Th₂Fe₁₄B. An imperfect alignment, which is indicated by a non-linearity of the hard-direction curve and by a relatively high (~ 3 T) saturation field in the easymagnetization direction, is due to the relatively low anisotropy of the compounds and a small amount (2-3%) of an isotropic impurity phase based on α -Fe. Nevertheless, the alignment is strong enough to determine the spontaneous magnetization $M_{\rm s}$ properly (from the easy-magnetization direction curve) and the anisotropy field B_a (from the hard-magnetization direction curve). $B_{\rm a}$ determined as a point of minimum of d^2M/dB^2 is shown in Fig. 1 by the arrow. For other compounds studied, the magnetization curves are qualitatively similar.

Figure 2 shows the temperature dependence of the first anisotropy constant $K_1 = (M_x B_a)/2$. A gradual development from anomalous to normal $K_1(T)$ behaviour with increasing Th content is seen in Fig. 2. For the compounds with $x \le 0.4$, an anomalous growth characteristic for Y_2 Fe₁₄B is observed.

The anomalous temperature dependence of K_1 of the Fe sublattice in $R_2 Fe_{14}B$ (with a trivalent R ion) is considered to originate from the different temperature dependence of the magnetic moments of the Fe atoms located on crystallographically non-equivalent

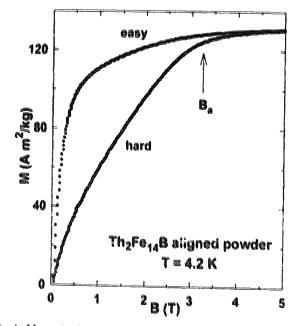


Fig. 1. Magnetization curves of aligned powder of $Th_2Fe_{14}B$ parallel and perpendicular to the axis of alignment at 4.2 K.

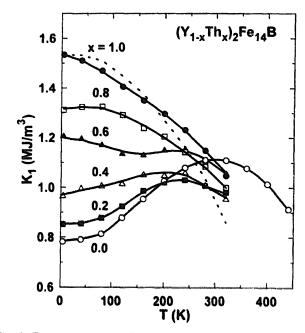


Fig. 2. Temperature dependence of the first anisotropy constant K_1 of $(Y_{1-x}Th_x)_2Fe_{14}B$. The dashed line represents third power of magnetization for x = 1.0 matched at 4.2 K. The data for x = 0 are taken from the single-crystal measurements [3].

positions. They have different signs of the local anisotropy constant. According to the Mössbauereffect investigations of the hyperfine magnetic fields $H_{\rm hf}$ on 57 Fe nuclei in different non-equivalent positions in R₂Fe₁₄B [4], the most gently sloping $H_{\rm hf}(T)$ dependence is observed for the positions 8j₁, 8j₂ and 16k₁, while in the other positions, 4e, 4c and 16k₂, the values of $H_{\rm hf}(T)$ (and, consequently, of the Fe magnetic moment $M_{\rm Fe}$) decrease more steeply with increasing temperature.

According to the single-ion model, the local second-order anisotropy constant K'_1 (for *i*th position) is proportional at low temperatures to M_{Fe}^{t3} . Therefore, the observed non-monotonous temperature dependence of the total constant

$$K_{1} = \sum_{i=1}^{6} K_{1}^{i}$$
 (1)

can be explained assuming negative K'_1 for Fe atoms located on positions with steep temperature decrease of M'_{Fe} . It should be noted, that using the $K_1(T) \alpha$ $M_s^3(T)$ relation for macroscopic values of K_1 and M_s leads to confusion. For Th₂Fe₁₄B, the fit $K_1(T) \alpha$ $M_s^3(T)$ is shown in Fig. 2 (matched at 4.2 K). $K_1(T)$ scales rather poorly with the third power of $\mu_{Fe}(T)$. In the remaining compounds, it does not scale at all, since the temperature dependence of spontaneous magnetization is monotonous for all compounds. Therefore $K_1(T)$ cannot be described using the temperature dependence of the average Fe magnetic moment. The consideration of several Fe sublattices is a principal point in the explanation of the observed anomaly.

The enhancement of the uniaxial anisotropy at low temperatures as well as the change of the temperature dependence in the $(Y_{1-x}Th_x)_2Fe_{14}B$ system with increasing Th content can be explained by the influence of the effective valence of the R ion on the magnetocrystalline anisotropy of the Fe sublattice. Assuming the point charge model, K_1^i depends on the effective charge of R ligands around *i*th Fe atom [5]:

$$K_1^i \alpha A_{20}^i = Z_R \lambda_R^i + Z_{Fe} \lambda_{Fe}^i$$
⁽²⁾

where A_{20}^i is the second-order crystal field parameter, Z_R and Z_{Fe} are the effective charges of the R and Fe ions, λ_R^i and λ_{Fe}^i are the lattice sums. The effective charges of the ions are usually assumed to be $Z_R = 3|e|$ for the trivalent R, $Z_R = 4|e|$ for the tetravalent R and $Z_{Fe} \approx 0.5|e|$ [5]. Since the lattice sums λ_R^i and λ_{Fe}^i are comparable [6], the change of the valence from 3 + (Y) to 4 + (Th) should result in a large change in K_1^i .

Concentration dependencies of magnetization and magnetic anisotropy are presented in Fig. 3. Although the spontaneous specific magnetization M_s at 4.2 K exhibits a strong decrease with increasing Th content, the corresponding increase in μ_{Fe} is very small. K_1 at

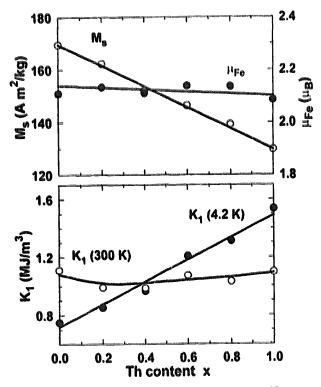


Fig. 3. Concentration dependences of spontaneous specific magnetization M_x , average spontaneous magnetic moment per Fe atom μ_{Fe} (top) and first anisotropy constant K_1 at 4.2 and 300 K (bottom).

4.2 K increases practically linearly with increasing Th content. Different temperature dependence leads to almost the same K_1 values (1 MJ m⁻³) for all the compounds at room temperature. The Curie temperature decreases with x somewhat non-linearly from 572 to 487 K.

Besides the anomaly in magnetic anisotropy discussed above, there is another specific feature of the $R_2Fe_{14}B$ compounds. They have Invar-type thermal expansion behaviour below $T_{\rm C}$ due to very large spontaneous magnetostriction, and the volume effects ω_s reaches 2% at low temperatures [7]. This Invar effect was considered as the origin of the non-monotonous $K_1(T)$ behaviour [8]. We have found, however, that there is no principal difference in thermal expansion between compounds with 'normal' and 'anomalous' $K_1(T)$ dependence in the Y₂(Fe_{1-x}Co_x)₁₄B system [9]. Thermal expansion of $Y_2Fe_{14}B$ and $Th_2Fe_{14}B$ measured on small single crystals is shown in Fig. 4. The lines represent the extrapolation of paramagnetic behaviour onto the ordered range (the Debye temperature value $T_{\rm D} = 450$ K was used for the extrapolation). The related differences between measured and extrapolated values of lattice parameters correspond to the linear λ_{μ} (in the basal plane) and λ_{c} (along the c axis) spontaneous magnetostrictions. Both terminal compounds have rather similar thermal expansion. At 5 K, they have nearly the same $\lambda_a = 9 \times 10^{-3}$. The difference is in the λ_c values (2.5 \times 10⁻³ and 5 \times 10⁻³ in $Y_2Fe_{14}B$ and $Th_2Fe_{14}B$, respectively). However, this difference could not influence magnetic anisotropy, as follows from data on $(Y_{0,8}Th_{0,2})_2 Fe_{14}B$ (Fig. 4). This compound has already λ_c as in Th₂Fe₁₄B, but still has non-monotonous $K_1(T)$ (Fig. 2). The volume effect $\omega_{h} = 2\lambda_{\mu} + \lambda_{\nu}$ increases slightly from 20×10^{-3} to 23.5×10^{-3} with increasing Th content. This shows no correlation between the huge Invar effect in R₂Fe₁₄B and the anomalous behaviour of magnetic anisotropy of the Fe sublattice.

We can also mention in this respect that the difference in lattice parameters between La₂Fe₁₄B and $Lu_2Fe_{14}B$ is 1.4% (a) and 4.1% (c) [10]. The c/aratio differs by 2.7%. However, these large variations do not affect the character of the $K_1(T)$ curve. For both compounds, $K_1(T)$ is non-monotonous and very similar in both cases. The influence of the thermal expansion on the interatomic distances is much weaker, all changes in a, c and c/a do not exceed 0.5% below $T_{\rm C}$. The point-charge-model calculation shows that the change in K_1 in Y_2 Fe₁₄B owing to the thermal expansion would be less than 1% in the temperature interval 0-0.5 $T_{\rm C}$ where non-monotonous behaviour of K_1 is observed [5]. Extrapolation of the high-temperature $K_1(T)$ curve to 0 K gives a much larger difference (approx. 40%) with respect to

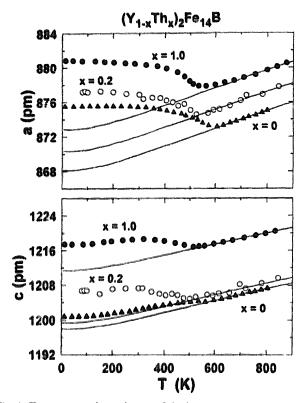


Fig. 4. Temperature dependences of the lattice parameters a and c for some of the $(Y_{1-x}Th_x)_2Fe_{14}B$ compounds. The lines are the extrapolations from the paramagnetic to the ordered range.

the actual $K_1(4.2 \text{ K})$ value, which cannot be explained by a possible influence of the thermal expansion.

Acknowledgements

The stay of M.I.B. in ISSP was supported by the Ministry of Education, Science and Culture of Japan. The work was supported by the grants A1010614 of Grant Agency of Academy of Sciences of Czech Republic and 202/96/0207 of Grant Agency of Czech Republic.

References

- [1] J.F. Herbst, Rev. Mod. Phys. 63 (1991) 819.
- [2] A.T. Pedziwiatr, W.E. Wallace, E. Burzo, J. Magn. Magn. Mater. 61 (1986) 177.
- [3] M.I. Bartashevich, A.V. Andreev, Physica B 162 (1990) 52.
- [4] M. Rani, R. Kamal, J. Less Common Met. 128 (1987) 343.
- [5] M.I. Bartashevich, N.V. Kudrevatykh, A.V. Andreev, V.A. Reimer, Sov. Phys. JETP 70 (1990) 1122.
- [6] Z. Kakol, H. Figel, Phys. Status Solidi B 138 (1986) 151.
- [7] A.V. Andreev, In: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, vol. 8, North-Holland, Amsterdam (1995) 59.
- [8] F. Bolzoni, J. Cavigan, D. Givord, H.S. Li, O. More, L. Pareti, J. Magn. Magn. Mater. 66 (1987) 158.
- [9] A.V. Andreev, M.I. Bartashevich, J. Less Common Met. 162 (1990) 33.
- [10] J.F. Herbst, Rev. Mod. Phys. 63 (1991) 819.